Lời giải:
Áp dụng định lý Vi-et, với $x_1,x_2$ là 2 nghiệm của pt $x^2-5x-1=0$ thì:
\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=-1\end{matrix}\right.\)
Khi đó:
\(\left\{\begin{matrix} y_1+y_2=x_1^4+x_2^4=(x_1^2+x_2^2)^2-2(x_1x_2)^2=[(x_1+x_2)^2-2x_1x_2]^2-2(x_1x_2)^2=727\\ y_1y_2=(x_1x_2)^4=1\end{matrix}\right.\)
Theo định lý Vi-et đảo, $y_1,y_2$ là nghiệm của PT:
$y^2-727y+1=0$