Violympic toán 8

VT

Cho \(P\left(x\right)=x^{100}-4x^{99}-20x^{98}-4x^{97}-20x^{96}-...-4x^3-20x^2-4x\). Tính \(P\left(7\right)=...\)

TL
10 tháng 6 2018 lúc 12:33

\(x=7\Rightarrow\left\{{}\begin{matrix}4=x-3\\20=3x-1\end{matrix}\right.\)\(\Rightarrow P\left(7\right)=x^{100}-4x^{99}-20x^{98}-4x^{97}-...-20x^2-4x\\ =x^{100}-\left(x-3\right)x^{99}-\left(3x-1\right)x^{98}-\left(x-3\right)x^{97}-...-\left(3x-1\right)x^2-\left(x-3\right)x\\ =x^{100}-x^{100}+3x^{99}-3x^{99}+x^{98}-x^{98}+3x^{97}-...-3x^3+x^2-x^2+3x\\ =3x\\ =21\)

 

Bình luận (0)