Bài 3: Phương trình bậc hai một ẩn

TN

Cho phương trình \(x^2-5x+m=0\)

Tìm các giá trị của m để phương trình có 2 nghiệm dương x1,x2 thỏa mãn \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)

AH
1 tháng 5 2019 lúc 22:37

Lời giải:

Để pt có 2 nghiệm pb $x_1,x_2$ thì :

\(\Delta=25-4m>0\Leftrightarrow m< \frac{25}{4}\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m\end{matrix}\right.\)

Để $x_1,x_2>0$ thì \(\left\{\begin{matrix} x_1+x_2=5>0\\ x_1x_2=m>0\end{matrix}\right.\Leftrightarrow m> 0\).

Khi đó:

\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)

\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow x_1x_2(x_1+x_2)+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow 5m+2m\sqrt{m}-36=0\)

\(\Leftrightarrow 2m(\sqrt{m}-2)+9(m-4)=0\)

\(\Leftrightarrow (\sqrt{m}-2)(2m+9\sqrt{m}+18)=0\)

\(\Rightarrow m=4\) (thỏa mãn)

Vậy......

Bình luận (3)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
QD
Xem chi tiết
KT
Xem chi tiết
CP
Xem chi tiết
HC
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
MR
Xem chi tiết