Ôn thi vào 10

AQ

Cho phương trình \(x^2-2\left(m-1\right)x+2m-3=0\)  (1)
a. Giải phương trình khi m = 1
b. Chứng minh rằng phương trình luôn có nghiệm với mọi m
c. Tìm m để (1) có 2 nghiệm trái dấu
d. Tìm hệ thức liên hệ giữa \(x_1,x_2\) không phụ thuộc vào m

NT
4 tháng 3 2022 lúc 7:22

a, Thay m = 1 ta đc

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm pb khi delta' > 0 

\(m-2\ne0\Leftrightarrow m\ne2\)

c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)

Bình luận (0)
NL
4 tháng 3 2022 lúc 8:59

d. 

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

Bình luận (0)