Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

TA

Cho phương trình: sin2x - 2mcosx = sinx - m. Tìm m để phương trình có đúng hai nghiệm thuộc đoạn [ 0 ; \(\dfrac{3\pi}{4}\) ]

BV
25 tháng 12 2017 lúc 14:56

\(pt\Leftrightarrow sin2x-sinx-m\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx-m=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\sinx=m\end{matrix}\right.\)
\(cosx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\).
Trong đoạn \(\left[0;\dfrac{3\pi}{4}\right]\) có hai nghiệm là \(\dfrac{\pi}{3},\dfrac{2\pi}{3}\).
Nên để hai phương trình \(sin2x-2mcosx=sinx-m\) có hai nghiệm thuộc đoạn \(\left[0;\dfrac{3\pi}{4}\right]\) thì phương trình \(sinx=m\) phải vô nghiệm trên đoạn \(\left[0;\dfrac{3\pi}{4}\right]\).
Trên đoạn \(\left[0;\dfrac{3\pi}{4}\right]\) hàm số \(y=sinx\) nhận giá trị trong đoạn \(\left[0;1\right]\) nên phương trình \(sinx=m\)vô nghiệm thì \(m\notin\left[0;1\right]\) hay \(\left[{}\begin{matrix}m< 0\\m>1\end{matrix}\right.\).

Bình luận (1)

Các câu hỏi tương tự
NC
Xem chi tiết
NC
Xem chi tiết
MN
Xem chi tiết
DL
Xem chi tiết
BB
Xem chi tiết
MM
Xem chi tiết
QD
Xem chi tiết
QA
Xem chi tiết
NL
Xem chi tiết