Violympic toán 9

NH

cho phương trình \(3x^2+5x-6=0\) có 2 nghiệm phân biệt: x1;x2.Ko giải pt hãy lập pt bậc hai có các nghiệm : y1= x1+\(\frac{1}{x_2}\)và y2=x2+\(\frac{1}{x_1}\)

AH
4 tháng 4 2020 lúc 10:07

Lời giải:

Áp dụng định lý Vi-et cho 2 nghiệm $x_1,x_2$ của pt $3x^2+5x-6=0$ ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-5}{3}\\ x_1x_2=-2\end{matrix}\right.\)

Khi đó:

\(\left\{\begin{matrix} y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}=(x_1+x_2)+\frac{x_1+x_2}{x_1x_2}=\frac{-5}{3}+\frac{-5}{3.(-2)}=\frac{-5}{6}\\ y_1y_2=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=\frac{-1}{2}\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo, $y_1,y_2$ là nghiệm của pt:

$y^2+\frac{5}{6}y-\frac{1}{2}=0$

$\Leftrightarrow 6y^2+5y-3=0$ (đây là pt cần tìm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
AM
Xem chi tiết
BB
Xem chi tiết
HH
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
AP
Xem chi tiết
HG
Xem chi tiết
BB
Xem chi tiết