Bài tập cuối chương 6

QL

Cho phân thức: \(P = \frac{{2{\rm{x}} + 1}}{{x + 1}}\)

a) Viết điều kiện xác định của P

b) Hãy viết P dưới dạng \(a - \frac{b}{{x + 1}}\), trong đó a, b là số nguyên dương

c) Với giá trị nào của x thì P có giá trị là số nguyên

HM
9 tháng 9 2023 lúc 14:31

a) Điều kiện xác định của P là: \(x + 1 \ne 0 \Rightarrow x \ne  - 1\)

b) \(P = \frac{{2{\rm{x}} + 1}}{{x + 1}} = \frac{{2{\rm{x}} + 2 - 1}}{{x + 1}} = 2 - \frac{1}{{x + 1}}\)

\( \Rightarrow a = 2,b = 1\)

c) Ta có: \(P = \frac{{2{\rm{x}} + 1}}{{x + 1}}\) với điều kiện \(x \ne  - 1\)

Để \(\frac{1}{{x + 1}}\) nhận giá trị nguyên thì \(1 \vdots \left( {x + 1} \right) \Leftrightarrow \left( {x + 1} \right) \in U\left( 1 \right) =  \pm 1\)

Ta có bảng sau:

x + 1

1

-1

x

0

-2

Vậy với x = 0; x = -2 thì biểu thức \(P = \frac{{2{\rm{x}} + 1}}{{x + 1}}\) nhận giá trị nguyên

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết