Violympic toán 9

NB

Cho parabol (P): y=x2 và đường thẳng (d): y=2x-m2+9

1. Tìm tọa độ các giao điểm của Parabol (P) và đường thẳng (d) khi m=1

2. Tìm (m) để đường thẳng (d) cắt parabol (P) tai hai điểm nằm về hai phía của trục tung

AH
29 tháng 3 2020 lúc 23:54

Lời giải:

1. PT hoành độ giao điểm:

$x^2-(2x-m^2+9)=0\Leftrightarrow x^2-2x+m^2-9=0(*)$

Khi $m=1$ thì pt trên trở thành: $x^2-2x-8=0$

$\Leftrightarrow (x-4)(x+2)=0\Rightarrow x=4$ hoặc $x=-2$

Khi $x=4\Rightarrow y=x^2=16$. Giao điểm thứ nhất là $(4,16)$

Khi $x=-2\Rightarrow y=x^2=4$. Giao điểm thứ hai là $(-2,4)$

2. $(P)$ và $(d)$ cắt nhau tại 2 điểm phân biệt $\Leftrightarrow (*)$ có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)

$\Leftrightarrow \Delta'=1-(m^2-9)>0\Leftrightarrow 10>m^2(1)$

Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm $x_1,x_2$ trái dấu. Điều này xảy ra khi $x_1x_2< 0\Leftrightarrow m^2-9< 0(2)$

Từ $(1);(2)$ suy ra $m^2-9< 0\Leftrightarrow -3< m< 3$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NS
Xem chi tiết
BB
Xem chi tiết
HB
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
HB
Xem chi tiết
NS
Xem chi tiết
TL
Xem chi tiết
NH
Xem chi tiết