Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

H24

Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m + 1)x - 4

a) Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt

b) Gọi A (x1;y1) và B (x2;y2) là hai giaoo điểm của đường thẳng (d) với parabol (P). Tìm m để \(\sqrt{x_1}-\sqrt{x_2}=2\)

NL
21 tháng 5 2021 lúc 12:57

a) Xét phương trình hoành độ giao điểm (d) và (P)

           \(x^2 = 2(m+1)x - 4\)

     \(<=> x^2 -2(m+1) + 4 = 0\) (1)

có \(\Delta' = [-(m+1)]^2 -4\)

\(\Delta' = (m+1)^2- 4\)

(d) và (P) cắt nhau tại hai điểm phân biệt

<=> Phương trình (1) có hai nghiệm phân biệt

<=> \(\Delta' \)> 0

<=> \((m + 1)^2 - 4 >0\)

<=> \((m+1)^2 >4\)

<=> \(\left[ \begin{array}{l}m+1 > 2\\m+1 <- 2\end{array} \right. \)

\(<=> \left[ \begin{array}{l}m > 1\\m < -3\end{array} \right. \)

b) Vì x1;x2 là hoành độ giao điểm của (d) và (P)

nên x1;x2 là hai nghiệm của phương trình (1)
Áp dụng hệ thức Viet có x1 + x= 2(m+1)

                                        x1x= 4

Mà \(\sqrt{x_1} - \sqrt{x_2} = 2\)(x1;x\(\geq \) 0)

=> \((\sqrt{x_1} - \sqrt{x_2})^2 = 4\)

<=> x1 - 2x1x2 + x2 = 4

<=> (x+ x2) - 2x1x2=4

<=> 2(m+1) - 2.4 = 4

<=> 2m + 2 - 8 = 4

<=> 2m = 10

<=> m = 5 (T/m)

Bình luận (1)

Các câu hỏi tương tự
ND
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
SV
Xem chi tiết
ND
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết