Chương I - Căn bậc hai. Căn bậc ba

HT

cho p= \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

a, tìm điều kiện xác định, rút gọn p

b, tìm x để p=\(\dfrac{2}{3}\)

HELP ME AND THANK YOU

MP
17 tháng 8 2018 lúc 14:51

a) điều kiện xác định : \(x\ge0;x\ne1\)

ta có : \(P=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

b) để \(P=\dfrac{2}{3}\Leftrightarrow\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}=\dfrac{2}{3}\)

\(\Leftrightarrow3\left(\sqrt{x}-1\right)=2\left(x+\sqrt{x}+1\right)\Leftrightarrow3\sqrt{x}-3=2x+2\sqrt{x}+2\)

\(\Leftrightarrow2x-\sqrt{x}+5=0\Leftrightarrow2\left(x-\dfrac{1}{2}\sqrt{x}+\dfrac{1}{16}\right)+\dfrac{79}{16}\)

\(\Leftrightarrow2\left(x-\dfrac{1}{4}\right)^2+\dfrac{79}{16}=0\left(vôlí\right)\)

vậy không tồn tại \(x\) để \(P=\dfrac{2}{3}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
LL
Xem chi tiết
PL
Xem chi tiết
LL
Xem chi tiết
VP
Xem chi tiết
NC
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
PD
Xem chi tiết