Cho (O, R) đường kính AB, tiếp tuyến Ax, trên Ax lấy điểm M bất kì, kẻ dây AC vuông góc với OM a) Chứng minh MC là tiếp tuyến của (O) b) Gọi H là hình chiếu vuông góc của C lên AB. Tiếp tuyến tại B cắt tia AC tại D. Gọi I là trung điểm của CH, tia AI cắt BD tại N. Chứng minh: N là trung điểm của BD c) Chứng minh: CN là tiếp tuyến của (O)
a: ΔOAC cân tại O có OM là đườg cao
nên OM là phân giác của góc AOC
Xét ΔOAM và ΔOCM có
OA=OC
góc AOM=góc COM
OM chung
=>ΔOAM=ΔOCM
=>góc OCM=90 độ
=>MC là tiếp tuyến của (O)
b: Xét ΔAND vuông tại N và ΔANB vuông tại N có
AN chung
góc NAB=góc NAD
=>ΔAND=ΔANB
=>DN=BN
=>N là trung điểm của BD
c: CN//AB
AB vuông góc CH
=>CN vuông góc CH
=>CN là tiếp tuyến của (O)