Violympic toán 9

BA

Cho (O) đk AB. C e OB và H là trđ AC. Qua H kẻ dây DE vuông góc với AC. BD cắt đg tròn đk BC tại D.

a) C/m DHCK nt

b) C/m E,C,K thẳng hàng

c) Qua K kẻ đg vuông góc DE cắt (O) tại M,N. M e cung DE nhỏ. C/m EM^2 + DN^2 = 4R^2

AT
11 tháng 6 2021 lúc 21:31

a) ý bạn chắc là BD cắt đường tròn đk BC tại K nhỉ.chứ ko có điểm K

Vì BC là đường kính \(\Rightarrow\angle CKB=90\)

\(\Rightarrow\angle DHC+\angle DKC=90+90=180\Rightarrow DHCK\) nội tiếp

b) Dễ dàng chứng minh được H là trung điểm DE

\(\Rightarrow\) DE và AC cắt nhau tại trung điểm mỗi đường

\(\Rightarrow ADCE\) là hình bình hành có \(DE\bot AC\Rightarrow ADCE\) là hình thoi

\(\Rightarrow CE\parallel DA\) mà \(DA\bot DB\left(\angle ADB=90\right)\Rightarrow CE\bot DB\)

mà \(CK\bot DB\left(\angle CKB=90\right)\Rightarrow C,E,K\) thẳng hàng 

c) MN cắt DE tại G.Kẻ tiếp tuyến MM' của (O)

Ta có: \(EM^2+DN^2=GM^2+GE^2+GD^2+GN^2\)

\(=\left(GM^2+GD^2\right)+\left(GE^2+GN^2\right)=MD^2+EN^2\left(1\right)\)

Vì MM' là đường kính \(\Rightarrow\angle MNM'=90\Rightarrow M'N\bot MN\)

mà \(MN\bot DE\) \(\Rightarrow M'N\parallel DE\) \(\Rightarrow DNM'E\) là hình thang

mà \(DNM'E\) nội tiếp \(\Rightarrow DNM'E\) là hình thang cân

\(\Rightarrow EN=M'D\left(2\right)\)

Từ (1) và (2) \(\Rightarrow EM^2+DN^2=DM^2+DM'^2=MM'^2=4R^2\)

undefined

 

Bình luận (0)

Các câu hỏi tương tự
BA
Xem chi tiết
BA
Xem chi tiết
BA
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
HN
Xem chi tiết