Violympic toán 9

SY
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.

a, CM : góc COD = 90o

b, CM : CD = AC + BD

c, gọi H là hình chiếu của M trên AB , I là giao điểm BC và MH . CM : IM = IH

AH
25 tháng 2 2021 lúc 15:30

Bạn có thể tham khảo bài tương tự ở đây:

BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn (... - Hoc24

Bình luận (0)
BT
7 tháng 12 2021 lúc 17:43

 CM góc COD = 90 độ 

Theo tính chất 2 tiếp tuyến cắt nhau 

Ta có : OC là phân giác góc AOM

=> góc COM = 1/2 góc AOM 

OD là phân giác góc BOM 

=> góc DOM = 1/2 góc BOM

=> góc COD = góc COM + góc DOM = 1/2 ( góc AOM + góc BOM ) = 1/2 góc AOB = 1/2 x 180 độ = 90 độ

Bình luận (0)
BT
7 tháng 12 2021 lúc 17:46

CM CD = AC + BD 

Theo tính chất của 2 tiếp tuyến cắt nhau ta có : 

AC = CM 

BD = MD

=> CD = MC + MD hay 

CD = AC + BD

Bình luận (0)
BT
7 tháng 12 2021 lúc 17:50

Câu C mình không biết làm

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
KG
Xem chi tiết
BB
Xem chi tiết
18
Xem chi tiết
SY
Xem chi tiết
GM
Xem chi tiết
DH
Xem chi tiết
AH
Xem chi tiết
MT
Xem chi tiết