Chương II - Đường tròn

NK

Cho nửa đường tròn (O), đường kính AB = 2R. Trên cùng một nửa mặt phẳng bờ AB kẻ 2 tiếp tuyến Ax, By với nửa (O). Lấy M bất kì trên nửa (O). Kẻ tiếp tuyến thứ ba với nửa đường tròn tại M cắt Ax, By thứ tự ở C, D.
a) Kẻ đường cao MH của tam giác AMB, MH cắt BC ở K. Chứng minh: K là trung điểm của MH.
b) Chứng minh: 3 đường thẳng BC, AD, MH đồng quy.  
c) Chứng minh: OE vuông góc AD.

AH
22 tháng 12 2021 lúc 8:19

Lời giải:
a.

$AC, BD$ cùng vuông góc với $AB$ (do là tiếp tuyến)

$MH\perp AB$ (gt)

$\Rightarrow AC\parallel MH\parallel BD$. Áp dụng định lý Talet:

$\frac{MK}{BD}=\frac{MC}{CD}$

$\Rightarrow MK=\frac{MC.BD}{CD}(1)$

$\frac{HK}{AC}=\frac{BK}{BC}=\frac{MD}{DC}$

$\Rightarrow HK=\frac{AC.MD}{DC}(2)$

Theo tính chất 2 tiếp tuyến cắt nhau thì $AC=MC; BD=MD(3)$

Từ $(1); (2); (3)\Rightarrow HK=MK$ nên $K$ là trung điểm $MH$

b. Gọi $K'$ là giao của $AD$ với $MH$

Tương tự như câu a, áp dụng định lý Ta let:

$\frac{MK'}{CA}=\frac{DM}{DC}$

$\Rightarrow MK'=\frac{AC.DM}{DC}$
$\frac{HK'}{DB}=\frac{AK'}{AD}=\frac{CM}{CD}$

$\Rightarrow HK'=\frac{BD.CM}{CD}$

$\Rightarrow HK'=MK'$ nên $K'$ là trung điểm $MH$

$\Rightarrow K\equiv K'$ nên $BC, AD, MH$ đồng quy.

c. Không có dữ liệu điểm $E$. 

 

Bình luận (0)
AH
22 tháng 12 2021 lúc 8:20

Hình vẽ:

Bình luận (0)
AH
22 tháng 12 2021 lúc 8:21

Hình vẽ:

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
P9
Xem chi tiết
HT
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
MN
Xem chi tiết
NK
Xem chi tiết