Violympic toán 9

NH

Cho m,n là 2 số nguyên.Chứng minh rằng nếu 7(m+n)2+2mn chia hết cho 225 thì mn cũng chia hết cho 225

TL
18 tháng 4 2020 lúc 14:59

225=152

=> \(2\left[7\left(m+n\right)^2+2mn\right]⋮15^{^2}\)

\(\Leftrightarrow14\left(m+n\right)^2+4mn⋮15^2\)

\(\Leftrightarrow14\left(m+n\right)^2+\left[\left(m+n\right)^2-\left(m-n\right)^2\right]⋮15^2\)

\(\Leftrightarrow15\left(m+n\right)^2-\left(m-n\right)^2⋮15^2\)

\(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\)

mà (3,5)=1 => (m-n)\(⋮\)15

=> (m-n)2\(⋮\)152

Tương tự 15(m+n)2\(⋮\)152

=> mn \(⋮\)225

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
H24
Xem chi tiết
CL
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
DA
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết
HH
Xem chi tiết