Bài 1: Giới hạn của dãy số

JE

cho \(\lim\limits_{x\rightarrow\dfrac{1}{2}}\dfrac{\sqrt{1+ax^2}-bx-2}{4x^3-3x+1}=c\)  (a,b,c thuoc R). tìm a, b, c?

NL
2 tháng 3 2021 lúc 23:56

\(4x^3-3x+1=\left(2x-1\right)^2\left(x+1\right)\) có nghiệm kép \(x=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{1+ax^2}-bx-2=0\) có nhiều hơn 1 nghiệm \(x=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{1+\dfrac{a}{4}}=\dfrac{b}{2}+2\Rightarrow\sqrt{a+4}=b+4\) (\(b\ge-4\))

\(\Rightarrow a=b^2+8b+12\)

\(\Rightarrow\sqrt{1+\left(b^2+8b+12\right)x^2}=bx+2\)

\(\Rightarrow1+\left(b^2+8b+12\right)x^2=b^2x^2+4bx+4\)

\(\Rightarrow\left(8b+12\right)x^2-4bx-3=0\)

\(\Rightarrow\left(2x-1\right)\left[\left(4b+6\right)x+3\right]=0\)

\(\Rightarrow\left(4b+6\right)x+3=0\) có nghiệm \(x=\dfrac{1}{2}\)

\(\Rightarrow2b+3+3=0\Rightarrow b=-3\) \(\Rightarrow a=-3\)

Khi đó:

\(\lim\limits_{x\rightarrow\dfrac{1}{2}}\dfrac{\sqrt{1-3x^2}+3x-2}{4x^3-3x+1}=\lim\limits_{x\rightarrow\dfrac{1}{2}}\dfrac{-12\left(2x-1\right)^2}{\left(x+1\right)\left(2x-1\right)^2\left(\sqrt{1-3x^2}+2-3x\right)}\)

\(=\lim\limits_{x\rightarrow\dfrac{1}{2}}\dfrac{-12}{\left(x+1\right)\left(\sqrt{1-3x^2}+2-3x\right)}=-8\)

\(\Rightarrow c=-8\)

Bình luận (0)
AH
3 tháng 3 2021 lúc 0:13

Lời giải:

\(\lim\limits_{x\to 0,5}\frac{\sqrt{1+ax^2}-bx-2}{4x^3-3x+1}=\lim\limits_{x\to 0,5}\frac{\sqrt{1+ax^2}-bx-2}{(x+1)(2x-1)^2}\)

Để giới hạn hàm đã cho hữu hạn thì $f(x)=\sqrt{1+ax^2}-bx-2$ có nhân tử là $(2x-1)^2$

$f(x)$ có nhân tử $2x-1 \Leftrightarrow f(\frac{1}{2})=0\Leftrightarrow b=\sqrt{4+a}-4$

Khi đó:

$\sqrt{1+ax^2}-bx-2=(2x-1)(2-\frac{2x+1}{\sqrt{1+ax^2}+x\sqrt{4+a}})$

Giờ ta cần xác định $a,b$ để $2-\frac{2x+1}{\sqrt{1+ax^2}+x\sqrt{4+a}}=0$ với $x=\frac{1}{2}$

$\Leftrightarrow \sqrt{4+a}=1\Leftrightarrow a=-3$

$b=\sqrt{4+a}-4=-3$

\(\lim\limits_{x\to 0,5}\frac{\sqrt{1-3x^2}+3x-2}{4x^3-3x+1}=\lim\limits_{x\to 0,5}\frac{-3(2x-1)^2(2x+1)}{(2\sqrt{1-3x^2}+1)(\sqrt{1-3x^2}+x)(2x-1)^2(x+1)}\)

\(=\lim\limits_{x\to 0,5}\frac{-3(2x+1)}{(2\sqrt{1-3x^2}+1)(\sqrt{1-3x^2}+x)(x+1)}=-2=c\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
NN
Xem chi tiết
JE
Xem chi tiết