Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác ABC vuông cân ở B, mặt phẳng (A'BC) vuông góc với mặt phẳng đáy, AB = 3a, AA' = 5a, \(\widehat{A'BC}=60^0\)
a) Tính thể tích khối lăng trụ ABC.A'B'C'
b) Tính khoảng cách từ C đến mặt phẳng (ABB'A')
Cho hình lăng trụ ABC.A'B'C' có đáy là hình tam giác vuông cân ở C. Cạnh B'B' = a và tạo với đáy một góc bằng \(60^0\). Hình chiếu vuông góc hạ từ B' lên đáy trùng với trọng tâm của tam giác ABC. Tính thể tích khối lăng trụ đó theo a ?
Bài 1: Cho lăng trụ đứng có đáy là tam giác đều biết rằng tất cả các cạnh của lăng trụ bằng a. Tính thể tích và tổng diện tích các mặt bên của lăng trụ.
Cho hình chóp SABCD có SA vuông góc với đáy. Tính thể tích khối chóp SABC biết: a. Tam giác ABC đều cạnh a, góc giữa SB và đáy là 30°. b. Tam giác ABC vuông tại A, AB=a, SA=5a; góc giữa SC và đáy là 60°
Tính thể tích tứ diện SABC trong mỗi trường hợp sau :
a, SABC là hình chóp đều, cạnh đáy=a, góc giữa mặt bên và cạnh đáy =45 độ.
b,Các cạnh bên cùng tạo với đáy góc 60 độ, AB=5a, BC=6a, CA=7a.
c, mp(SAB) vuông góc với mp(ABC), tam giác ABC là tam giác đều có cạnh=a, góc giữa SC và mp(ABC)=30 độ.
d,góc giữa các mặt bên và mặt đáy = nhau=60 độ, tam giác ABC có AB=a,AC=2a, góc A=60 độ .
e, SA vuông góc với mp(ABC), SA=a, góc giữa (SBC) và đáy là 60 độ
Cho hình lăng trụ đứng tam giác ABC.A'B'C' có tất cả các cạnh đều bằng a :
a) Tính thể tích khối tứ diện A'BB'C
b) Mặt phẳng đi qua A'B' và trọng tâm tam giác ABC, cắt AC và BC lần lượt tại E và F. Tính thể tích hình chóp C.A'B'FE
Bài 1: cho lăng trụ ABC. A'B'C' có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A len mặt đáy trùng với trung điểm B'C'. Tính thể tích lăng trụ biết AA'=a√2.
Bài 2: cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác vuông tại B, góc ABC=600, cạnh BC=a, đường chéo A'B tạo với mặt phẳng đáy (ABC) một góc 300. Tính thể tích khối lăng trụ ABC. A'B'C'
Bài 3: hình trụ có bán kính đáy là R. Trục giữa OO'=R. Cho A, B lần lượt trên 2 đường tròn đáy, A∈(O), B∈(O') ,AB=R√2. Tính góc giữa AB và trục hình trụ.
Cho lăng trụ đứng ABC.A'B'C có đáy ABC là tam giác vuông tại B, AB=a, BC=a căn 2, mặt bên (A'BC) hợp với mặt đáy (ABC) 1 góc 30°. Tính thể tích khối lăng trụ
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Gọi M, N và E theo thứ tự là trung điểm BC, CC' và C'A'. Đường thẳng EN cắt đường thẳng AC tại F, đường thẳng MN cắt đường thẳng B'C' tại L. Đường thẳng FM kéo dài cắt AB tại I, đường thẳng LE kéo dài cắt A'B' tại J
a) Chứng minh rằng các hình đa diện IBM.JB'L và A'EJ.AFI là những hình chóp cụt
b) Tính thể tích khối chóp F.AIJA'
c) Chứng minh rằng mặt phẳng (MNE) chia khối lăng trụ đã cho thành hai khối đa diện có thể tích bằng nhau