Chương 5: ĐẠO HÀM

JE

cho hso \(y=\dfrac{x^3}{3}-x^2+mx+m-1\). tìm tất cả các tham số m để y'≥0, \(\forall x\in\left(1,3\right)\)

 

NL
23 tháng 4 2021 lúc 23:52

\(y'=x^2-2x+m\)

\(y'\ge0\) ; \(\forall x\in\left(1;3\right)\Leftrightarrow x^2-2x+m\ge0\) ;\(\forall x\in\left(1;3\right)\)

\(\Leftrightarrow m\ge\max\limits_{\left(1;3\right)}\left(-x^2+2x\right)\)

Xét hàm \(f\left(x\right)=-x^2+2x\) trên \(\left(1;3\right)\)

\(-\dfrac{b}{2a}=1\) ; \(f\left(1\right)=1\) ; \(f\left(3\right)=-3\)

\(\Rightarrow m\ge1\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
KN
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết
JE
Xem chi tiết