Violympic toán 9

TL

Cho hpt: \(\left\{{}\begin{matrix}x+my=1\\mx+y=1\end{matrix}\right.\)

(m là tham số)

a) Giải hpt với m = 2

b) Tìm m để hpt có no duy nhất thỏa mãn x, y >0

NT
27 tháng 1 2019 lúc 21:45

ĐK: \(m\ne0\)

a, Thay m = 2 (TM) vào hệ PT ta có:

\(\left\{{}\begin{matrix}x+2y=1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\2x+y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=1\\2x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy hệ PT có nghiệm (x ; y) là \(\left(\dfrac{1}{3};\dfrac{1}{3}\right)\)

b, \(\left\{{}\begin{matrix}x+my=1\\mx+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\left(1\right)\\mx+y=1\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2) ta có: \(m\left(1-my\right)+y=1\)\(\Leftrightarrow m-m^2y+y=1\Leftrightarrow y\left(1-m^2\right)=1-m\left(3\right)\)

Để hệ PT có nghiệm duy nhất \(\Leftrightarrow\)PT (3) có nghiệm \(\Leftrightarrow1-m^2\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

Với \(m\ne\pm1\) thì hệ PT có nghiệm duy nhất

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1-m}{1-m^2}=\dfrac{1-m}{\left(1-m\right)\left(1+m\right)}=\dfrac{1}{1+m}\\x=\dfrac{1}{1+m}\end{matrix}\right.\)

Để x, y > 0 \(\Leftrightarrow\dfrac{1}{1+m}>0\)mà 1 > 0 nên \(1+m>0\Leftrightarrow m>-1\)kết hợp với điều kiện ta có: \(m>-1,m\ne1\)

Bình luận (0)
NL
27 tháng 1 2019 lúc 21:48

Mình làm câu b thôi nhé

b) Ta có: x + my = 1

=> x = 1 - my

Lại có: mx + y = 1

=> y = 1 - mx = 1 - m(1 - my) = 1 - m + m2y

=> y - m2y = 1 - m

=> y(1 - m2) = 1 - m

=> y = \(\dfrac{1-m}{1-m^2}=\dfrac{1}{1+m}\)

=> x = 1 - \(\dfrac{m}{1+m}\) = \(\dfrac{1}{1+m}\)

=> Để x, y > 0 thì m + 1 > 0

=> m > -1

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NS
Xem chi tiết
NL
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
HA
Xem chi tiết
BB
Xem chi tiết
AA
Xem chi tiết
BB
Xem chi tiết