Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

TH

          Cho hình vuông ABCD có B(0;4) ; M,N lần lượt là trung điểm BC,CD . Xác định tọa độ các đỉnh hình vuông biết E(5;3) thuộc đường thẳng AM, điểm N thuộc đường thẳng d:x-2y-6=0 và N có tung độ âm

NH
5 tháng 5 2023 lúc 1:02

Để giải bài toán này, ta thực hiện các bước sau đây:

Bước 1: Tìm tọa độ của điểm A. Vì hình vuông ABCD là hình vuông nên ta có AB=BC=CD=DA. Vậy, ta có tọa độ điểm A là A(0;6).

Bước 2: Tìm tọa độ của điểm C. Vì M là trung điểm của BC và BM=MC nên ta có tọa độ điểm C là C(2;2).

Bước 3: Tìm tọa độ của điểm D. Vì hình vuông ABCD là hình vuông nên ta có AD vuông góc AB và AD=AB. Vậy, tọa độ điểm D là D(-6;4).

Bước 4: Tìm tọa độ của điểm N. Điểm N có tung độ âm nên nằm dưới trục hoành. Ta cần tìm tọa độ của điểm N bằng cách giải hệ phương trình hợp là của đường thẳng d:x-2y-6=0 và đường thẳng CD: y = -x + 4.

Giải hệ phương trình ta có:

x - 2y = -6y = -x + 4

Thay y của phương trình 2 vào phương trình 1 ta có:

x - 2(-x + 4) = -6 <=> x = 2

Thay x = 2 vào phương trình 2 ta có: y = -2 + 4 <=> y = 2

Vậy, tọa đó điểm N là N(2;2).

Bước 5: Tìm tọa độ của điểm B. Vì B là đỉnh của hình vuông ABCD và biết tọa độ của điểm A và C nên ta có tọa độ điểm B là B(-2;6).

Bước 6: Tìm tọa độ của điểm E. Ta biết E thuộc đường thẳng AM nên ta có phương trình đường thẳng AM. Ta có tam giác AEM vuông tại E với AM là đường cao. Vậy, ta sử dụng định lý Pythagoras để tìm tọa độ của E.

Đường thẳng AM có hệ số góc bằng: m = (y_A-y_M)/(x_A-x_M) = (6-3)/(0-2) = -1.5

Vậy, phương trình đường thẳng AM là: y = -1.5x + 6 Điểm E thuộc đường thẳng AM nên thay x của E vào phương trình đường thẳng AM ta có: 3 = -1.5x + 6 <=> x = 2

Thay x của E vào phương thức đường thẳng AM ta có: y = -1.5*2 + 6 <=> y = 3

Vậy, tọa độ điểm E là E(2;3).

Bước 7: Tóm tắt kết quả. Tọa độ các đỉnh hình vuông là: A(0;6), B(-2;6), C(2;2), D(-6;4) Đường thẳng AM có phương trình là: y = -1.5x + 6 Tọa độ của điểm E là E(2;3) Điểm N có tọa độ là N(2;2)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
LG
Xem chi tiết
TH
Xem chi tiết
BB
Xem chi tiết
LC
Xem chi tiết