Bài 13. Hai mặt phẳng song song

H24

Cho hình tứ diện SABC. Trên cạnh SA lấy các điểm A1,A2
sao cho AA1=A1A2=A2S.
. Gọi (P) và (Q) là hai mặt phẳng song song với mặt phẳng (ABC) và lần lượt đi qua A1,A2.
. Mặt phẳng (P) cắt các cạnh SB, SC lần lượt tại B1,C1.
. Mặt phẳng (Q) cắt các canhj SB, SC lần lượt tại B2,C2.
. Chứng minh BB1=B1B2=B2Svà CC1=C1C2=C2S.

QL
22 tháng 9 2023 lúc 20:42


Áp dụng định lí Thales cho ba mặt phẳng (ABC), (P), (Q) và hai cát tuyến SA, SC ta có: 

\(\frac{{{C_2}S}}{{{A_2}S}} = \frac{{{C_1}{C_2}}}{{{A_1}{A_{2\;}}}} = \frac{{C{C_1}}}{{A{A_1}}}\) mà \(A{A_1} = {A_1}{A_2} = {A_2}S\).

Suy ra \(C{C_1} = {C_1}{C_2} = {C_2}S\).
Áp dụng định lí Thales cho ba mặt phẳng (ABC), (P), (Q) và hai cát tuyến SA, SB ta có:

\(\frac{{{B_2}S}}{{{A_2}S}} = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = \frac{{B{B_1}}}{{A{A_1}}}\) mà \(A{A_1} = A{A_2} = {A_2}S\).

Suy ra \(B{B_1} = {B_1}{B_2} = {B_2}S\).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết