Bài 13. Hai mặt phẳng song song

H24

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là các điểm thuộc các cạnh SA, SB, SC, SD sao cho

\(\dfrac{\text{MA}}{MS}=\dfrac{NB}{NS}=\dfrac{PC}{PS}=\dfrac{QD}{QS}\)=\(\dfrac{1}{2}\). Chứng minh rẳng bốn điểm M, N, P, Q đồng phẳng.

QL
23 tháng 8 2023 lúc 12:55

loading...

Bình luận (0)
QL
23 tháng 8 2023 lúc 12:56

Xét tam giác SAD có: \(\dfrac{MA}{MS}=\dfrac{QD}{QS}\) suy ra MQ // AD do đó MQ // (ABCD)

Tương tự ta có: QP // (ABCD)

Vậy mp(MPQ) // mp(ABCD).

Lập luận tương tự, ta có mp(NPQ) // (ABCD).

Hai mặt phẳng (MPQ) và (NPQ) cùng đi qua điểm P và cùng song song với mặt phẳng (ABCD) nên hai mặt phẳng đó trùng nhau, tức bốn điểm M, N, P, Q đồng phẳng.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết