Cho tam giác ABC . Qua trọng tâm G , kẻ đường thẳng d cắt các cạnh AB , CB theo thứ tự ở E , F . Chứng minh rằng : \(\dfrac{BE}{AE}+\dfrac{CF}{AF}=1\)
Cho hình vuông ABCD cạnh a, E thuộc cạnh BC, F thuộc cạnh AD sao cho: CE=AF. Các đường AE, BF cắt CD theo thứ tự tại M và N.
a) CM: \(CM.DN=a^2\)
b) Gọi MB giao với NA tại K. CM: \(\widehat{MKN}=90\) độ
c) Các điểm E, F có vị trí như thế nào thì MN có độ dài nhỏ nhất
Cho hình thang ABCD ( AB // CD ) . Các đường chéo cắt nhau ở O . Đường thẳng a qua O // với đáy của hình thang và cắt các cạnh bên AD , BC theo thứ tự E và F . Chứng minh rằng :
a) \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{EF}\)
b) Đường thẳng b // với đây cắt 2 cạnh bên và cắt 2 đường chéo của hình thang lần lượt là M ; N ; H ; K . Chứng minh : MH = MK
AI TRẢ LỜI ĐƯỢC MÌNH TICK CHO
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
câu 1:cho tam giác abc, điểm d thuộc cạnh bc. qua d kẻ đường thẳng song song với ac, ab , chúng cắt ab , ac theo thứ tự ở e, f . cm
\(\frac{ae}{ab}\)+\(\frac{af}{ac}\)=1
câu 2 : Cho tam giác abc(ab<ac), đường phân giác ad. Qua trung điểm m của bc , kẻ đường thẳng song song với ad , cắt ac và ab theo thứ tự ở e và k .cm
a)ae=ak
b)bk=ce
1/Cho ΔABC có 3 góc nhọn, vẽ về phía ngoài ΔABC hình vuông BCDE. Nối AE,AD theo thứ tự cắt BC tại M,N.Các đường thẳng vuông góc với BC kẻ từ M,N cắt AB,AC tương ứng tại P,Q. CMinh:
a)PQ//BC
b)MNPQ là hình vuông
2/Cho hình vuông ABCD và điểm E trên BC. Tia Ax⊥AE, Ax cắt CD tại F. Vẽ trung tuyến AI của ΔAEF và kéo dài cắt cạnh CD tại N. Đường thẳng qua E//AB cắt AI tại M.
a)CMinh EMFN là hình thoi
b)CMinh AF\(^2\)=NE.CF
c)Khi E di động trên BC. CMinh ΔECN ko đổi
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)