Violympic toán 8

BB

Cho hình vuông ABCD cạnh a, E thuộc cạnh BC, F thuộc cạnh AD sao cho: CE=AF. Các đường AE, BF cắt CD theo thứ tự tại M và N. 

a) CM: \(CM.DN=a^2\)

b) Gọi MB giao với NA tại K. CM: \(\widehat{MKN}=90\) độ

c) Các điểm E, F có vị trí như thế nào thì MN có độ dài nhỏ nhất

TH
9 tháng 3 2021 lúc 22:45

a) Theo hệ quả của định lý Thales ta có:

\(\dfrac{DN}{AB}=\dfrac{AF}{FD};\dfrac{CM}{AB}=\dfrac{CE}{EB}\Rightarrow\dfrac{DN}{AB}.\dfrac{CM}{AB}=\dfrac{AF}{FD}.\dfrac{CE}{EB}=1\Rightarrow DN.CM=a^2\).

b) Do \(CM.DN=a^2=AD.BC\Rightarrow\dfrac{CM}{BC}=\dfrac{AD}{DN}\).

Mà \(\widehat{MCB}=\widehat{ADN}=90^o\Rightarrow\Delta NDA\sim\Delta BCM\left(c.g.c\right)\Rightarrow\widehat{AND}=\widehat{MBC}\Rightarrow\widehat{AND}+\widehat{MCB}=\widehat{MBC}+\widehat{MCB}=90^o\Rightarrow\widehat{MKN}=90^o\).

c) Áp dụng bất đẳng thức AM - GM:

\(DN+CM\ge2\sqrt{DN.CM}=2a\).

Do đó \(MN=DN+DC+CM\ge2a+a=3a\).

Đẳng thức xảy ra khi và chỉ khi DN = CM \(\Leftrightarrow DN=CM=a\)

\(\Leftrightarrow\) E, F lần lượt là trung điểm của BC, DA.

Bình luận (0)

Các câu hỏi tương tự
UI
Xem chi tiết
UI
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết