Cho hình thang ABCD(AB//CD,AB<CD).Hai cạnh bên AD và BC cắt nhau tại E.Từ điểm M bất kỳ trên đáy CD kẻ MN//DE,MP//EC.Cmr \(\frac{NE}{ED}+\frac{EP}{EC}=1\)
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho hình bình hành ABCD, E là điểm bất kì trên cạnh AB ( E≠A, E≠B ). Tia DE cắt AC ở F, cắt CB ở G.
a) Chứng minh ∆AEF ∆CDF; ∆AFD ∆CFG.
b) Chứng minh FD2 = FE.FG.
c) Từ F kẻ đường thẳng song song với đường thẳng AB cắt AD tại điểm H. Chứng minh 1:AE+1:AB=1:HF
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
Bài 1: 1) Trên tia Ax lấy các điểm B, C, D theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.
a) Tính các tỷ số số AB/ BC và BC/CD
b) Chứng minh BC2 = AB.CD
2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.
a) Tính tỉ số AB/CD
b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD
Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.
a) Chứng minh AD/BD = AE/EC
b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.
Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.
a) Chứng minh AD/AB = AE/AC
b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC
Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:
a) Tỷ số DE/AE
b) Độ dài các đoạn thẳng AE, DE và AD.
Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC
b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.
cho hình chữ nhật ABCD ( AB<BC) . gọi M là trung điểm cạnh BC sao cho CM=CD . từ M kẻ đường thẳng song song với CD cắt AD tại N . trên tia đối của tia MN lấy điểm E sao cho ME=MB . chứng minh AD vuông góc DE
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Cho △ABC cân tại A. Lấy D ∈ AB, E ∈ AC sao cho AD = AE.
a) Chứng minh rằng BDEC là hình thang cân
b) Lấy M là trung điểm của BD, N là trung điểm của EC. Biết MN = 3cm , BC = 4cm. Tính DE
c) Từ D kẻ DH // EC cắt MN tại K ( H ∈ BC) .Chứng minh : K là trung điểm của DH. Từ đó suy ra DH = EC = DB.
Cho tam giác ABC có AB = 6cm, AC = 9cm, BC = 12cm. Trên cạnh AB lấy điểm D sao cho AD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 3cm.
a) Chứng minh tứ giác BCED là hình thang.
b) Tính DE.
c) Gọi O là giao điểm của BE và CD. Qua O kẻ đường thẳng song song với BC, đường thẳng này cắt BD, CE lần lượt tại I và K. Chứng minh OI = OK
d) Chứng minh: \(\frac{ID}{BD}+\frac{KC}{EC}=1\)