Có \(AB\)//\(DI\left(gt\right)\), \(AD\)//\(BI\left(gt\right)\) suy ra \(ABID\) là hình bình hành
\(\Rightarrow BI=AD=BC\)
Do vậy \(\Delta BIC\) cân tại \(B\)
C/m tương tự suy ra \(\Delta ADK\) cân tại \(A\)
Mà \(\widehat{ADK}=\widehat{BCI}\) (2 góc cùng đáy trong hình thang cân)
Vì 2 tam giác cân có 2 cạnh bên bằng nhau và 1 góc ở đáy bằng nhau
(góc ở đáy bằng nhau suy ra góc ở đỉnh bằng nhau r xét 2 tam giác bằng nhau)
Ta suy ra \(\Delta BIC=\Delta ADK\left(c.g.c\right)\)
Vậy \(DK=CI\left(đpcm\right)\)