Bài 5. Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

H24

Cho hình lập phương \(ABCD.A'B'C'D'\). Tính góc giữa các đường thẳng sau đây với mặt phẳng \(\left( {ABCD} \right)\):

a) \(AA'\);                           

b) \(BC'\);                           

c) \(A'C\).

BK
20 tháng 8 2023 lúc 23:08

THAM KHẢO:

Thực hành 1 trang 83 Toán 11 tập 2 Chân trời

a) Vì AA′⊥(ABCD) nên góc giữa đường thẳng AA' và (ABCD) là \(90^0\)

b) CC′⊥(ABCD) nên C là hình chiếu vuông góc của C' lên (ABCD).

Suy ra góc giữa BC' và (ABCD) là \(\widehat{C'BC}\)=\(45^O\) (Vì BCC'C' là hình vuông)

c) Gọi cạnh của hình lập phương là a

Ta có: AC=\(a\sqrt{2}\),tan \(\widehat{ACA'}\)=\(\dfrac{1}{\sqrt{2}}\) nên \(\widehat{ACA'}\)=\(35^O\)

AA′⊥(ABCD) nên A là hình chiếu vuông góc của A' lên (ABCD)

Suy ra góc giữa A'C và (ABCD) là \(\widehat{ACA'}\)=\(35^O\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết