Cho hình trụ có hai đường tròn đáy tâm O và O' ; bán kính đáy bằng chiều cao và bằng 3a. Mặt phẳng song song với trục của hình trụ cắt hình trụ theo thiết diện là hình chữ nhật ABCD. Thể tích khối chóp O.ABCD có giá trị lớn nhất bằng?
Cho hình trụ có hai đường tròn đáy tâm O và O' ; bán kính đáy bằng chiều cao và bằng 3a. Mặt phẳng song song với trục của hình trụ cắt hình trụ theo thiết diện là hình chữ nhật ABCD. Thể tích khối chóp O.ABCD có giá trị lớn nhất bằng?
Cho lăng trụ ABC.A'B'C' có đáy là tam tác đều cạnh a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm của cạnh AB, góc giữa đường thẳng A'C và mặt phẳng đáy bằng 60 độ. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách từ điểm B đến mặt phẳn (ACC'A')
Cho khối lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vương, cạnh đáy bằng \(2a\sqrt{2}\) và đường chéo AC'=5a. Tính thể tích khối lăng trụ đã cho
A. \(24a^3\) B. \(8a^3\) C.\(17\sqrt{2}a^3\) D.\(4a^3\)
Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB=a, góc giữa 2 mặt phẳng (A'BC) và (ABC) bằng 60 độ. Gọi G là trọng tâm của tam giác A'BC.
Tính thể tích của khối lăng trụ đã cho và bán kính mặt cầu ngoại tiếp tứ diện GABC theo a
cho lăng trụ ABC.A’B’D’ có A’ABC là hình chóp tam giác đều,AB=a.Gọi α là góc giữa mặt phẳng (A’BC) và mặt phẳng (B’C’CB).Tính thể tích khối chóp A’.BCC’B’ theo α biết cosα=1/√3
Cho lăng trụ tam giác ABC.A'B'C' có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A. \(AB=a;AC=a\sqrt{3}\) và hình chiếu vuông góc của đỉnh A' lên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính theo a thể tích của khối chóp A'ABC và tính cosin của góc giữa 2 đường thẳng AA', B'C'
giúp mình bài này với:
:cho hình lăng trụ tam giác đều ABC.A'B'C có canh đáy bằng a,cạnh bên bằng 2a.tính thể tích của khối tứ diện ABB'C'
Cho hình chóp SABCD có đáy là hình vuông cạnh a, đường cao SA=2a. Gọi (P) là mặt phẳng qua A và vuông góc với SC. Tính diện tích của hình chóp cắt bởi mặt phẳng (P)