Chương 1: KHỐI ĐA DIỆN

BP

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB=a, góc giữa 2 mặt phẳng (A'BC) và (ABC) bằng 60 độ. Gọi G là trọng tâm của tam giác A'BC.

Tính thể tích của khối lăng trụ đã cho và bán kính mặt cầu ngoại tiếp tứ diện GABC theo a

HT
2 tháng 4 2016 lúc 10:39

_ Thể tích khối lăng trụ : 

Gọi D là trung điểm của BC ta có : \(BC\perp AD\Rightarrow BC\perp A'D\Rightarrow\widehat{ADA'}=60^0\)

Ta cso \(AA'=AD.\tan\widehat{ADA'}=\frac{3a}{2};S_{ABC}=\frac{a^2\sqrt{3}}{4}\)

Do đó \(V_{ABC.A'B'C'=}S_{ABC}.AA'=\frac{3a^2\sqrt{3}}{8}\)

- Bán kính mặt cầu ngoại tiếp tứ diện GABC :

Ta có I là giao điểm của GH với đường trung trực của AG trong mặt phẳng (AGH)

Gọi E là trung điểm của AG, ta có :

\(R=GI=\frac{GE.GA}{GH}=\frac{GA^2}{2GH}\)

Ta có :

\(GH=\frac{AA'}{3}=\frac{a}{2};AH=\frac{a\sqrt{3}}{3};GA^2=GH^2+AH^2=\frac{7a^2}{12}\)

Do đó \(R=\frac{7a^2}{2.12}.\frac{2}{a}=\frac{7a}{12}\)

Bình luận (1)
HT
2 tháng 4 2016 lúc 10:47

A B C D G H A' B' C' A E G H I

Bình luận (0)