Cho hình chóp S.ABCD có đáy là hình thôi ABCD, góc \(\widehat{BAD}\) = 60 độ, cạnh SA vuông với mp đáy, SA=AB=a
a. CMR: BD vuông góc với mp(SAC)
b. Gọi H là trực tâm của tam giác SBD, M là trung điểm AD. Tính cosin của góc giữa (SB; (BHM)).
giúp mk câu b vs, mk ko bt vẽ trực tâm, cảm ơn
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mặt phẳng ABCD và SA = a góc giữa đường thẳng SB và mặt phẳng ABCD bằng: A 45 độ B 90 độ C 30 độ D 60 độ
Cho hình chóp S.ABCD có đáy ABC là tam giác đều cạnh bằng a , mặt bên (SBC) vuông góc với đáy. Gọi M, N, P theo thứ tự là trung điểm AB, SA, AC . Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).
Cho hình chóp S.ABCD có đáy ABC là tam giác đều cạnh bằng a , mặt bên (SBC) vuông góc với đáy. Gọi M, N, P theo thứ tự là trung điểm AB, SA, AC . Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).
cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA=SC, SB=SD, SO=a. khoảng cách từ điểm A đến mặt phẳng (SBD) là a. tính góc giữa SC và mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a có cạnh SA=a căn 2 và SA vuông góc với mặt phẳng với (ABCD).Tính a) Góc giữa đường thẳng BC và mặt phẳng (SAB) b)Góc giữa đường thẳng DC và mặt phẳng (SAB)
Cho hình chóp S.ABCD, có đáy ABCD là hình vuông tâm O có cạnh bằng a,SA=a√3 và SA vuông góc với (ABCD) a,CMR:DC vuông góc với (SAD) b, Tính góc giữa đường thẳng SD và mặt phẳng (ABCD)
Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình bình hành, các cạnh bên vuông góc với mặt đáy. \(\Delta\)ACD vuông tại A , AC=AA'. Chứng minh rằng: AC' \(\perp\)(A'D'C)
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a . Tính góc giữa cạnh bên và mặt đáy .