a: XétΔAFE và ΔCFD có
góc AFE=góc CFD
góc FAE=góc FCD
Do đó: ΔAFE\(\sim\)ΔCFD
b: Xét ΔAFD và ΔCFG có
góc FDA=góc FGC
góc AFD=góc CFG
Do đó: ΔAFD đồng dạng với ΔCFG
=>FA/FC=FD/FG
hay FE/FD=FD/FG
hay \(FD^2=FE\cdot FG\)
a: XétΔAFE và ΔCFD có
góc AFE=góc CFD
góc FAE=góc FCD
Do đó: ΔAFE\(\sim\)ΔCFD
b: Xét ΔAFD và ΔCFG có
góc FDA=góc FGC
góc AFD=góc CFG
Do đó: ΔAFD đồng dạng với ΔCFG
=>FA/FC=FD/FG
hay FE/FD=FD/FG
hay \(FD^2=FE\cdot FG\)
Cho hình chữ nhật ABCD , E là một điểm trên cạnh AB ; DE cắt AC tại F và cắt CB tại G
a, Chứng minh : Tam giác AFE đồng dạng với tam giác CFD
b, Chứng minh : FD mũ 2 = FE . FG
c, Khi E là trung điểm của AB , xác định tỉ số diện tích tam giác AFE với diện tích hình chữ nhật ABCD
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
cho hình chữ ngật ABCD có AB=3cm, BC=3cm
a) Tính BD
b) Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. Chứng minh: tam giác BCD đồng dạng tam giác CFB. Tính CF
c) Gọi O là giao điểm của AC và BD. Nối EO cắt CF tại I và cắt BC tại K. Chứng minh: I là trung điểm của CF
d) chứng minh: D,K, F thẳng hàng
Cho hình bình hành ABCD, E là điểm bất kì trên cạnh AB ( E≠A, E≠B ). Tia DE cắt AC ở F, cắt CB ở G.
a) Chứng minh ∆AEF ∆CDF; ∆AFD ∆CFG.
b) Chứng minh FD2 = FE.FG.
c) Từ F kẻ đường thẳng song song với đường thẳng AB cắt AD tại điểm H. Chứng minh 1:AE+1:AB=1:HF
Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho tam giác ABC nhọn hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh BH.HD = CH.HE
c) Chứng minh Chứng tam giác ADE đồng dạng tam giác ABC
d) Gọi F là giao điểm của AH và BC, K là trung điểm của AH. Chứng minh: BF.CF = KF2 – HD2