Violympic toán 9

VA

Cho hình chữ nhật ABCD ; AH vuông góc với BD tại H . Gọi I ; M lần lượt là trung điểm BH ; CD .Vẽ IK vuông góc AM tại K . CMR

a) \(IM ^2 + IA ^2 = BC ^2 + 1/4 CD^2\)

b) \(\frac{1}{IK^2}=\frac{1}{IA^2}+\frac{1}{IM^2}\)

VH
7 tháng 7 2019 lúc 16:59

a) Vẽ MN, CP vuông góc với BD.

Cần chứng minh:

\(IM^2+IA^2=BC^2+\frac{CD^2}{4}=AD^2+DM^2=AM^2\)

ΔBAH = ΔDCP(g.c.g) ⇒ AH = CP

MN là đường trung bình của tam giác DCP ⇒ \(MN=\frac{CP}{2}=\frac{AH}{2}\)

Dễ chứng minh ΔBAH~ΔDMN(g.g) ⇒ \(DN=\frac{BH}{2}\)

Ta có:

\(IN=IH-HN=\frac{BH}{2}-\left(DN-DH\right)=\frac{BH}{2}-\frac{BH}{2}+DH=DH\)

Do đó: \(IM^2+IA^2=AH^2+IH^2+IN^2+MN^2\)

\(=AH^2+\frac{BH^2}{4}+DH^2+\frac{AH^2}{4}=BC^2+\frac{CD^2}{4}\)\(=AM^2\) (đpcm)

(Áp dụng định lý Pytago đảo)

b) Từ phần a suy ra tam giác AIM vuông tại I

Do đó dễ chứng minh \(\frac{IK^2}{IA^2}+\frac{IK^2}{IM^2}=\frac{IM^2}{AM^2}+\frac{IA^2}{IM^2}=\frac{IM^2}{IM^2}=1\)

Suy ra đpcm

Bình luận (7)

Các câu hỏi tương tự
VA
Xem chi tiết
BL
Xem chi tiết
NH
Xem chi tiết
LT
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết