\(M\in\left(ABM\right)\cap\left(SCD\right)\)
AB//DC
=>(ABM) giao (SCD)=xy, xy đi qua M và xy//AB//DC
Gọi giao của SD với xy là E
=>E=SD giao (ABM)
\(M\in\left(ABM\right)\cap\left(SCD\right)\)
AB//DC
=>(ABM) giao (SCD)=xy, xy đi qua M và xy//AB//DC
Gọi giao của SD với xy là E
=>E=SD giao (ABM)
Cho hình chóp S.ABCD có AB và CD không song song . Gọi M là một điểm thuộc miền trong của tam giác SCD .
a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)
b) Tìm giao tuyến của 2 mặt phẳng (SBM) và (SAC)
c) Tìm giao điểm I của đường thẳng BM và mp(SAC)
d) tìm giao điểm P của SC và mp(ABM) , từ đó suy ra giao tuyến của 2 mặt phẳng (SCD) và (ABM) .
Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Gọi M, N là trung điểm SB, AD, P là điểm thuộc SC sao cho SP=2PC
a.Tìm giao tuyến của (SBD) và (SAC)
b.Tìm giao điểm của CD với (MNP)
c. Tìm thiết diện tạo bởi mặt phẳng (MNP) với hình chóp
Giúp mk vs ạ!!!
Cho tứ diện ABCD.Gọi I,J lần lượt là trung điểm của các cạnh AB và BC
a)Xác định giao tuyến của hai mặt phẳng (IJD) và (ACD)
b)Lấy một điểm E trên cạnh AD.Hãy tìm giao tuyến của hai mặt phẳng (IJE) và (ACD),suy ra giao điểm của đường thẳng CD và mặt phẳng (IJE),thiết diện tạo bởi (IJE) và tứ diện ABCD
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây :
a) (SAC) và (SBD)
b) (SAB) và (SCD)
c) (SAD) và (SBC)
Câu 1. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Cho M,N,P lần lượt là trung điểm của AB,SA,SC.
a) Tìm giao tuyến của hai mặt phẳng (MNC) và (SAD).
b) Chứng minh OE//(SAB)
Cho tứ diện ABCD. Cho I và J tương ứng là trung điểm của BC và AC, M là một điểm tùy y trên cạnh AD
a) Tìm giao tuyến d của hai mặt phẳng (MIJ) và (ABD)
b) Gọi N là giao điểm của BD với giao tuyến d, K là giao điểm của IN và JM. Tìm tập hợp điểm K khi M di động trên đoạn AD (M không phải là trung điểm của AD)
c) Tìm giao tuyến của hai mặt phẳng (ABK) và (MIJ)
Cho chóp S.ABCD, đáy là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm của OB,SD,BC a) Tìm giao tuyến của (NPO) và ( SCD) ; (SAB) và (AMN) b) Tìm giao điểm E của SA với (MNP). C/m : ME // PN c) Tìm thiết diện khi bị cắt bởi (MNP)
Cho tứ diện đều ABCD cạnh a.Gọi M,N lần lượt là trung điểm AC,BC.Gọi P là điểm trên cạnh BD sao cho PB=2PD:
a, Tìm giao tuyến của mặt phẳng (MNP) với các mặt của tứ diện nếu có. Từ đó suy ra thiết diện của tứ diện khi cắt bởi nặt phẳng (MNP).
b,Tính diện tích thiết diện theo a
giải dùm mình cần gấp tối nay lúc 8h giúp dùm mình cần gấp
Cho chóp S.ABCD đáy là hình thang đáy lơn AD và AD=2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm tam giác SCD. a) C/m : OG // (SBC)
b) Cho M là trung điểm SD. Chứng minh rẳng CM // (SAB) c) Gỉa sử I nằm trên SC sao cho SC = 3/2 SI. C/m : SA // (BID)
a, Cho S.ABCD có đáy là hình thang ( đáy lớn BC) . Điểm M là trung điểm SC , I thuộc AD . O là giáo điểm của AC, BD . Tìm giao điểm của IC vs SBD. b, Tìm giao điểm của IM vs SBD. c, Tìm giao điểm của AM vs SCD. d, Tìm tiếp diện của mặt phẳng a vs hình chóp biển a qua song song vs BC và SD.