Bài tập cuối chương VII

H24

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết tam giác SAD vuông cân tại \(S\) và \((SAD) \bot (ABCD)\).

a) Tính theo a thể tích của khối chóp S.ABCD.

b) Tính theo a khoảng cách giữa hai đường thẳng AD và SC.

DH
16 tháng 8 2023 lúc 19:06

Gọi M là trung điểm của AD. Suy ra SM vuông góc mặt phẳng (ABCD). 

a, Vì tam giác SAD là tam giác vuông cân 

\(\Rightarrow SA=SD=\dfrac{a}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}a\)

\(\Rightarrow SM=\sqrt{SA^2-AM^2}=\dfrac{1}{2}a\)

\(\Rightarrow V_{S.ABCD}=SM.S_{ABCD}=\dfrac{1}{2}a.a^2=\dfrac{1}{2}a^3\)

b, Qua M dựng đường thẳng MN song song với AB cắt BC tại N. Dựng MH vuông góc với SN. 

Dễ dàng nhận thấy BC vuông góc với (SMN) do \(SM\perp BC;MN\perp BC\)

\(\Rightarrow MH\perp BC\)

mà \(MH\perp SN\Rightarrow MH\perp\left(SBC\right)\Rightarrow MH\perp SC\)

Hay MH chính là khoảng cách giữa AD và SC (Do cùng vuông góc) 

Ta có: \(\dfrac{1}{MH^2}=\dfrac{1}{SM^2}+\dfrac{1}{MN^2}\Rightarrow\dfrac{1}{MH^2}=\dfrac{1}{\dfrac{1}{4}a^2}+\dfrac{1}{a^2}=\dfrac{5}{a^2}\Rightarrow MH=\dfrac{\sqrt{5}}{5}a\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết