Lời giải:
Kẻ \(SH\perp BA\)
Vì \((SAB)\perp (ABCD); (SAB)\cap (ABCD)=BA\) nên \(SH\perp (ABCD)\)
Từ dữ kiện đề bài:
\(S_{ABCD}=AC.BD=a\sqrt{3}.a=\sqrt{3}a^2\)
Gọi \(O=AC\cap BD\). Theo tính chất hình thoi:
\(AO=\frac{AC}{2}=\frac{\sqrt{3}a}{2}; BO=\frac{BD}{2}=\frac{a}{2}\)
\(\rightarrow AB=\sqrt{AO^2+BO^2}=a\)
Vì $SAB$ vuông cân tại $S$ nên \(SB=SA=\frac{AB}{\sqrt{2}}=\frac{a}{\sqrt{2}}\)
\(S_{SAB}=\frac{SA.SB}{2}=\frac{SH.AB}{2}\rightarrow SH=\frac{SA.SB}{AB}=\frac{\frac{a}{\sqrt{2}}.\frac{a}{\sqrt{2}}}{a}=\frac{a}{2}\)
Vậy:
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a}{2}.\sqrt{3}a^2=\frac{\sqrt{3}a^3}{6}\)