Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy các điểm M, N, P, Q lần lượt thuộc các cạnh BC, SC, AD sao cho MN//SB; NP//CD; MQ//CD.
a) Chứng minh: PQ//(SAB).
b) Gọi K là giao điểm của MN và PQ. Chứng minh rằng K luôn chạy trên một đường thẳng cố định.
Cho hình chóp S.ABCD có đáy hình bình hành . Gọi M,N,P,Q lần lượt là trung điểm của SA, SB , AB, CD
a) xác định giao điểm K của đường thẳng SD và (MPQ)
b) chứng minh MK song song BC. Chứng minh SC song song (MPQ)
c) chứng minh (MNK) song song (ABCD)
d) xác định thiết diện cắt bởi (MNK) với hình chóp và cho biết thiết diện là hình gì ?
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M và N lần lượt là trung điểm của AB và SC. a) Xác định giao điểm I, K của đường thẳng AN,MN với (SBD); b) Chứng minh ba điểm B,I,K thẳng hàng c) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi (ABN); d) Tính các tỷ số (IA)/(IN), (KM)/(KN), (IB)/(IK)
Cho hình chóp SABCD. Gọi M, N, P, Q lần lượt trên SA, SB, SC, SD sao cho MNPQ là hình thang (MN song song PQ). Biết AB song song CD. Chứng minh rằng MN và PQ song song với đáy của Chóp
Cảm ơn các bạn trước
Cho hình chóp S.ABCD có đáy ABCD là tứ giác không phải hình thang.Gọi M, N là các điểm lần lượt nằm trên các cạnh SD, SC. Tìm giao điểm của: a, AM và mặt phẳng (SBC) b, MN và mặt phẳng (SAB)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác không phải hình thang.Gọi M, N là các điểm lần lượt nằm trên các cạnh SD, SC. Tìm giao điểm của: a, AM và mặt phẳng (SBC) b, MN và mặt phẳng (SAB)
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy nhỏ AB = n, đáy lớn CD = m (m, n là các số thực dương, m > n). Các cạnh bên thỏa mãn SA = SB, SC = SD. Gọi O là giao điểm hai đường chéo AC và BD. Lấy điểm I trên đoạn SO sao cho IS/IO = k. Gọi (alpha) là mặt phẳng đi qua AI và song song với CD. Tìm điều kiện của k để thiết diện của hình chóp S.ABCD với mặt phẳng (alpha) là một hình chữ nhật.
Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình thang có
AD || BC, AD = 2BC. Gọi M và N lần lượt là trung điểm của các cạnh
SC và BC.
a) Tìm giao tuyến của hai mp (SAB) và (SCD).
b) Chứng minh MN || (SBD).
c) Tìm giao điểm của SD với mp (AMN)