Bài 3: Khái niệm về thể tích của khối đa diện

HV

Cho hình chóp SABCD có ABCD là hình vuông cạnh a, SA vuông góc với ABCD. Góc giữa SB ,(ABCD) = 60. Gọi M,N lần lượt là trung điểm của SB,SD. Tính khoảng cách giữa hai đường thẳng AN và CM?

HV
14 tháng 6 2016 lúc 10:57

Từ M kẻ MI//CN =>d(CN,MI)= d(C;SAD)= CD. Yếu tố góc 60 mình không biết có phải thừa hay ko?

Bình luận (0)
HV
28 tháng 6 2016 lúc 9:33

bài mình được chữa đây. mn ai thích thì tham khảo nhé. Hay và khó ạ!

P S T Q B D C A M H K I a

Bình luận (0)
HV
28 tháng 6 2016 lúc 9:55

Sửa đề bài: d(AM,CN). MS=MD. NS=NB

SAD ΩSBC =PT. Kẻ TQ //AM. =>AM// (TCQ). d(AM,CN)=d(A, TCQ)

Từ T kẻ TH //SA. Từ H kẻ HK vuông với QC => QC vuông với THK. Kẻ HI vuông với TK => HI vuông với TCQ =>d (H, TCQ)= HI. Mặt #, \(\frac{d\left(A,TCQ\right)}{d\left(H,TCQ\right)}\)\(\frac{AQ}{AH}\)   => Tính HI => Có: TH= SA->Tính HK? 

Có: QHK ∞ QDC. => \(\frac{HK}{CD}\) = \(\frac{QH}{QC}\) 

QH= AD= AH=1/3QD.( Do PTHD là hcn=> PT= DH, có ST =AH(STAH: hbh) , PS= QH(PTAQ: hbh, ST=AH), PS= AD(PSAD:hbh, do M: TĐ SD, AP (SM=AM, SPA vuông tại S) ->PS=ST=AD=AH=HQ=> HK

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
TH
Xem chi tiết
DT
Xem chi tiết
QM
Xem chi tiết
HT
Xem chi tiết
CC
Xem chi tiết
NL
Xem chi tiết
KN
Xem chi tiết
TT
Xem chi tiết