hình chóp S.ABC có đáy ABC vuông cân tại B, AC=a\(\sqrt{2}\) SA vuông góc với mặt đáy và SA=a. Gọi G là trọng tâm của tam giác SBC, mặt phẳng (\(\alpha\)) đi qua AG và song song với BC, cắt SC, SB lần lượt tại M, N. tính thể tích khối S.AMN
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=a , AB vuông góc với SA , BC vuông góc với SC . Gọi M,N lần lượt là trung điểm SC,AC . Góc giữa hai mặt phẳng (BMN) và (SAB) là a thỏa mãn cosa= \(\dfrac{\sqrt{5}}{3}\).Thể tích khối chóp S.BMN bằng bao nhiêu?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , AB=BC=a, AD=2a. Cạnh bên SA vuông góc với mặt phẳng (ABCD) , góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 độ .Tính theo a thể tích của khối chóp A.ABCD
Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Từ A kẻ các đoạn thẳng AD vuông góc với SB và AE vuông góc với SC. Biết rằng AB = a, BC = b, SA = c
a) Hãy tính thể tích khối chóp S.ADE
b) Tính khoảng cách từ E đến mặt phẳng (SAB)
Câu 27: Cho hình chóp .S ABCD có đáy là hình vuông cạnh 2a. Mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết 3 SA a . Thể tích của khối chóp .S BCD theo a bằng ?
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), mặt phẳng (SBC) vuông góc với mặt phẳng (SAB) , SA=a căn3 , BC=SB=2a. Tính theo a thể tích khối chóp S.ABC.
GIÚP MÌNH VỚI
Cho hình chóp SABCD có SA vuông góc với đáy. Tính thể tích khối chóp SABC biết: a. Tam giác ABC đều cạnh a, góc giữa SB và đáy là 30°. b. Tam giác ABC vuông tại A, AB=a, SA=5a; góc giữa SC và đáy là 60°
cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB= acăn2, SA vuông góc với đáy, góc giữa SC và (ABC) là 60 độ, H là hình chiếu của A trên SC, mặt phẳng chứa AH//BC cắt SB tại K. tính tỉ lệ VS.AHK : VABCHK
mọi người giải chi tiết giúp mình vs nha
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a tam giác ABC cân tại s và nằm trong mặt phẳng vuông góc với đáy SB tạo với mặt đáy một góc 30 độ M là trung điểm của BC Tính thể tích khối chóp S.ABC và khoảng cách giữa SB và AM tttheoa