Bài 3: Đường thẳng vuông góc với mặt phẳng

NT

Cho hình chóp S ABCD, có đáy là hình vuông tâm O, SA vuông góc với mặt phẳng (ABCD). Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A lên SB, SC, SD.

1.CMR : AH, AK cùng vuông góc với SC. Từ đó suy ra 3 đường thẳng AH, AI, AK cùng nằm trong một mặt phẳng.

  2. Chứng minh rằng HK⊥(SAC) , HK ⊥ AI.

AM
11 tháng 2 2022 lúc 7:53

Bạn vẽ hình giúp mình nha!

a. Ta có: \(\left\{{}\begin{matrix}BC\perp AB\left(ABCD.là.hình.vuông\right)\\BC\perp SA\left(SA\perp\left(ABCD\right)\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)

Có: \(\left\{{}\begin{matrix}BC\perp AH\left(cmt\right)\\AH\perp SB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\) (đpcm)

Chứng minh tương tự với AK, ta cũng có: \(AK\perp\left(SCD\right)\Rightarrow AK\perp SC\)

Có: \(\left\{{}\begin{matrix}AH\perp SC\\AK\perp SC\\AI\perp SC\end{matrix}\right.\) \(\Rightarrow\)SC vuông góc với mặt phẳng chứa A,H,I,K

Hay A,H,I,K cùng nằm trong một mặt phẳng

b. Có: \(SC\perp\left(HIK\right)\Rightarrow SC\perp HK\)

Xét \(\Delta SAB\) vuông tại A và \(\Delta SAD\) vuông tại A có: \(\left\{{}\begin{matrix}SA.là.cạnh.chung\\AB=AD\left(ABCD.là.hình.vuông\right)\end{matrix}\right.\) 

\(\Rightarrow\)\(\Delta SAB\) = \(\Delta SAD\) \(\Rightarrow AH=AK\Rightarrow\dfrac{SH}{SB}=\dfrac{SK}{SD}\)

Áp dụng định lí Ta-let đảo ta có: HK//BD

Xét \(\Delta SBD\) có: SB=SD \(\Rightarrow\)\(\Delta SBD\) cân tại S

\(\Rightarrow\) SO vừa là đường trung tuyến vừa là đường cao 

\(\Rightarrow\) \(SO\perp BD\)

Mà BD//HK

\(\Rightarrow\)\(SO\perp HK\)

Ta có: \(\left\{{}\begin{matrix}SO\perp HK\\SC\perp HK\end{matrix}\right.\) \(\Rightarrow HK\perp\left(SAC\right)\) (đpcm) \(\Rightarrow HK\perp AI\) (đpcm)

Bình luận (0)