Cho hình chóp SABCD, ABCD là hình vuông. SC vuông góc (ABCD). Gọi CN, CM lần lượt là đường cao của tam giác SCD và tam giác SBC
a) Chứng minh CN vuông góc với SA
b) Chứng minh CM vuông góc với SA
c) Chứng minh SA vuông góc với MN
1.Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và SA vuông góc với mặt phẳng (ABC).
a. Chứng minh (SBC) ⊥ (SAB).
b. Tính góc giữa hai mặt phẳng (SBC) và (ABC), biết AC=a√3 , SA= a√6 , BC = a
2.Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD) và SA= a√2/2
a. Chứng minh (SAC)⊥ (SBD).
b. Tính góc giữa hai mặt phẳng (SBD) và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA ⊥ (ABCD) và SA = 3a.
a) Chứng minh AD ⊥ (SAB) và AB ⊥ (SAD)
b) Kẻ đường cao AM trong tam giác SAB. Chứng minh rằng AM ⊥ SC
c) Tính góc giữa đường thẳng SB và (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA ⊥ (ABCD) và SA = 3a.
a) Chứng minh AD ⊥ (SAB) và AB ⊥ (SAD)
b) Kẻ đường cao AM trong tam giác SAB. Chứng minh rằng AM ⊥ SC
c) Tính góc giữa đường thẳng SB và (SAC)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh, tam giác SAB cân tại S. SA=SB=2a, (SAB) \(\perp\) (ABCD)
a, Tính (SD,(ABCD))
b, (SH, (SCD)) với H là trung điểm của
c, (SC, (SAB))
d, (SA, (SBC))
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Góc (BAD)= 60. Tam giác SAD là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với đáy, SA= \(\dfrac{a\sqrt{5}}{4}\) Gọi M, N, P lần lượt là trung điểm AD, DC và SB
a, Chứng minh SM ⊥ (ABCD), (SBD) ⊥ (SMN)
b, Tính góc giữa M và (SAC)
Cho chóp S.ABCD đáy là hình chữ nhật. SA vuông góc đáy, SA=a√5;AD=2AB=4a.
a, Chứng minh BC vuông góc với mp (SAB).
b, Tính (SB;(ABCD).
(SC;(ABCD).
(SD;ABCD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, cạnh bên SA vuông góc với đáy và SA = . Gọi AE, AH lần lượt là các đường cao của ΔSAB và ΔSAD
1) Chứng minh rằng: BC ⊥ (SAB), BD ⊥ (SAC)
2) Chứng minh rằng: (SAD) ⊥ (SDC)
3) Chứng minh rằng: AE ⊥ SC và AH ⊥ SC
4) Tính góc giữa: đường thẳng SC và mặt phẳng (SAB), đường thẳng SB và mặt phẳng (SAC)
5) Tính góc giữa (SBD) và (ABCD)
6) Tính khoảng cách từ điểm O đến mặt phẳng (SCD)
cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA vuông góc (ABCD), SA=a căn 2
1.chứng minh : các mặt bên của hình chóp là tam giác vuông
2. (SAC) vuông góc (SBD)
3.Tính (SC,(SAB))
4.tan ((SBD),(ABCD))
5.d(A,(SBC)),d(A,(SCD))
6.d(SC,BD)
7.Hãy chỉ ra điểm I cách đều S,A,B,C,D. tính SI