Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B, C, lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC, AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q(Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa
Cho hình vuông ABCD, M là trung điểm của CD. Gọi K là điểm nằm trên đường thẳng BD sao cho K không trùng với D và AK vuông góc với KM. Tính tỉ số DK/DB.☕
. Cho điểm A(1; 2) và đường thẳng d: 2x - 3y - 1 = 0 Viết phương trình đường thẳng delta đi qua A và vuông góc với d.
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
Viết phương trình đường thẳng \(\left(\Delta\right)\) vuông góc với đường thẳng \(\left(d\right):x+y+6=0\) và \(\left(\Delta\right)\) cắt đường tròn \(\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=25\) tại hai điểm M và N sao cho \(S_{\Delta IMN}=\dfrac{25}{2}\) ( biết \(I\) là tâm đường tròn )
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn :
\(\left(C_1\right):x^2+y^2+10x=0\)
\(\left(C_2\right):x^2+y^2-4x-2y-20=0\)
có tâm lần lượt là I, J
a) Viết phương trình đường tròn (C) đi qua các giao điểm của \(\left(C_1\right),\left(C_2\right)\) và có tâm nằm trên đường thẳng \(d:x-6y+6=0\)
b) Viết phương trình tiếp tuyến chung của \(\left(C_1\right),\left(C_2\right)\). Gọi \(T_1,T_2\) lần lượt là tiếp điểm của \(\left(C_1\right),\left(C_2\right)\) với một tiếp tuyến chung, hãy viết phương trình đường thẳng \(\Delta\) qua trung điểm của \(T_1T_2\) và vuông góc với IJ
Cho điểm \(M\left(1;-2\right)\) và đường thẳng \(\Delta\) có phương trình :
\(3x-4y-1=0\)
a) Tìm tọa độ điểm M' đối xứng với M qua đường thẳng \(\Delta\)
b) Viết phương trình đường thẳng \(\Delta'\) đối xứng với \(\Delta\) qua điểm M
c) Viết phương trình đường tròn tâm M và tiếp xúc với đường thẳng \(\Delta\)
Trong mặt phẳng tọa độ Oxy, cho điểm \(B\left(\frac{-7}{5};\frac{6}{5}\right)\), đường thẳng \(\Delta:3x-4y-1=0\) và đường tròn (C): \(x^2+y^2-2x+4y+1=0\)
a) Viết PT đường tròn (C') có tâm B và tiếp xúc với \(\Delta\)
b) Viết PT đường thẳng \(\Delta'\) vuông góc với \(\Delta\) và tiếp xúc với (C)
c) Chứng tỏ rằng hai đường tròn (C') và (C) đối xứng với nhau qua đường thẳng \(\Delta\)
Trong mặt phẳng Oxy cho đường tròn (T) có phương trình :
\(x^2+y^2-4x-2y+3=0\)
a) Tìm tọa độ tâm và tính bán kính của đường tròn (T)
b) Tìm m để đường thẳng \(y=x+m\) có điểm chung với đường tròn (T)
c) Viết phương trình tiếp tuyến \(\Delta\) với đường tròn (T) biết rằng \(\Delta\) vuông góc với đường thẳng d có phương trình \(x-y+2006=0\)