a: Xét ΔAMN có
AB/AM=AD/AN
nên BD//MN và BD/MN=AB/AM=1/2
=>BD=1/2MN
Xét tứ giác BDNC có
BC//ND
BC=ND
Do đó: BDNC là hình bình hành
Suy ra: BD//NC và BD=NC
=>N,C,M thẳng hàng và MN=2NC
=>M và N đối xứng nhau qua C
b: Để ΔAMN cân thì AM=AN
=>AB=AD
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: Xét ΔAMN có
AB/AM=AD/AN
nên BD//MN và BD/MN=AB/AM=1/2
=>BD=1/2MN
Xét tứ giác BDNC có
BC//ND
BC=ND
Do đó: BDNC là hình bình hành
Suy ra: BD//NC và BD=NC
=>N,C,M thẳng hàng và MN=2NC
=>M và N đối xứng nhau qua C
b: Để ΔAMN cân thì AM=AN
=>AB=AD
cho tam giác ABC có E,F,M lần lượt là trung điểm AB,AC,BC I là điểm đối xứng M qua E,K đối xứng M qua F a) chứng minh AEMF là hình bình hành b) ABC có thêm điều kiện gì để AEMF là hình chữ nhật c)chứng minh AMCK là hình bình hành d)tam giác ABC có thêm điều kiện gì để AMCK là hình chữ nhật e)chứng minh EK = BI f)chứng minh A là trung điểm IK
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC vuông tại A có AC=4cm, trung tuyến AM. D là điểm đối xứng với M qua AB
a) CM: tứ giác AMBD là hình thoi
b) CM: CD đi qua trung điểm của AM
c) Tìm điều kiện của tam giác ABC để AMBD là hình vuông. Khi đó hãy tính \(S_{AMBD}\)
cho tam giac ABC cân tại A gọi M,O lần lượt là trung điểm BC, AC. gọi N là điểm đối xứng với M qua O
a.tính diện tích tam giác ABC biết AB=5cm,Bc=6cm
b.tứ giác AMCN là hình gì? vì sao?
c.tam giác ABC có thêm điều kiện gì thì tứ giác AMCN là hình vuông