a: Xét ΔADM và ΔCBN có
góc DAM=góc BCN
AD=CB
góc D=góc B
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN và DM=BN
=>AN=CM
Xét tứ giác AMCN có
AM=CN
AN=CM
D đó: AMCN là hình bình hành
b: Xét tứ giác BNDM có
BN//DM
BN=DM
Do đó: BNDM là hình bình hành
Suy ra: BM=DN
a: Xét ΔADM và ΔCBN có
góc DAM=góc BCN
AD=CB
góc D=góc B
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN và DM=BN
=>AN=CM
Xét tứ giác AMCN có
AM=CN
AN=CM
D đó: AMCN là hình bình hành
b: Xét tứ giác BNDM có
BN//DM
BN=DM
Do đó: BNDM là hình bình hành
Suy ra: BM=DN
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
(các bn chỉ cần làm câu c thôi nha)
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là trung điểm của AB và AC. Qua B kẻ đường thẳng song song với AC cắt tia NM tại D
a) CM: Tứ giác BDNC là hình bình hành
b) Tứ giác BDNH là hình gì? Vì sao?
c) Gọi K là điểm đối xứng của H qua N. Qua N kẻ đường thẳng song song với HM cắt DK tại E. Chứng minh: DE=2EK
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi
Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. Chứng minh: \(\dfrac{DK}{DC}=\dfrac{1}{3}\)
cho tam giac ABC cân tại A gọi M,O lần lượt là trung điểm BC, AC. gọi N là điểm đối xứng với M qua O
a.tính diện tích tam giác ABC biết AB=5cm,Bc=6cm
b.tứ giác AMCN là hình gì? vì sao?
c.tam giác ABC có thêm điều kiện gì thì tứ giác AMCN là hình vuông
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)