Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

VP

Cho hệ phương trình \(\left\{{}\begin{matrix}x+xy+y=m+2\\x^2y+xy^2=m+1\end{matrix}\right.\)

Tìm m để hệ phương trình có nghiệm duy nhất

HD
9 tháng 12 2017 lúc 21:07

Đặt \(S=x+y\); \(P=xy\) \(\left(S^2\ge4P\right)\); HPT trở thành

\(\left\{{}\begin{matrix}S+P=m+2\\SP=m+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}P=m+2-S\\\left(m+2-S\right)S=m+1\end{matrix}\right.\)

\(\Rightarrow S^2-S\left(m+2\right)+m+1=0\)

\(\Rightarrow\Delta=m^2\) \(\Rightarrow\left[{}\begin{matrix}S=1\\S=m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}S=1\\P=m+1\end{matrix}\right.\curlyvee\left\{{}\begin{matrix}S=m+1\\P=1\end{matrix}\right.\)

* Với \(\left\{{}\begin{matrix}S=1\\P=m+1\end{matrix}\right.\)\(\Rightarrow S^2\ge4P\Leftrightarrow1\ge4\left(m+1\right)\)\(\Leftrightarrow m\le\dfrac{-3}{4}\)

Vậy nên x,y là nghiệm của phương trình

\(X^2-X+m+1=0\) \(\Rightarrow\Delta_1=1-4\left(m+1\right)\)

* Với \(\left\{{}\begin{matrix}S=m+1\\P=1\end{matrix}\right.\)\(\Rightarrow S^2\ge4P\Leftrightarrow\left(m+1\right)^2\ge4\Leftrightarrow\left[{}\begin{matrix}m\le-3\\m\ge1\end{matrix}\right.\)

Vậy x,y là nghiệm của phương trình

\(Y^2-\left(m+1\right)Y+1=0\)\(\Rightarrow\Delta_2=\left(m+1\right)^2-4\)

Để HPT có nghiệm duy nhất

1)\(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1=0\\\Delta_2< 0\end{matrix}\right.\)\(\Leftrightarrow m=\dfrac{-3}{4}\) thỏa mãn đk \(S^2\ge4P\)

2) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta_2=0\\\Delta_1< 0\end{matrix}\right.\)\(\Leftrightarrow m=1\) thỏa mãn ĐK

3) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1=0\\\Delta_2=0\end{matrix}\right.\)vô nghiệm

Vậy \(\left[{}\begin{matrix}m=\dfrac{-3}{4}\\m=1\end{matrix}\right.\) thì hệ có 1 nghiệm duy nhất

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
GT
Xem chi tiết
KR
Xem chi tiết
AS
Xem chi tiết
CD
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết