Violympic toán 9

PH

Cho hệ phương trình \(\left\{{}\begin{matrix}mx+2my=m+1\\x+\left(m+1\right)y=2\end{matrix}\right.\)

a) Tìm m để hệ có nghiệm duy nhất (x; y) thỏa mãn:

1) M (x; y) thuộc góc phần tư thứ nhất

2) \(M\left(O;\sqrt{5}\right)\) với O là gốc tọa độ

c) Khi hpt có nghiệm duy nhất (x; y) chứng minh rằng M (x; y) luôn nằm trên 1 đường thẳng cố định.

NH
30 tháng 12 2019 lúc 0:02

Ta có :

\(\left\{{}\begin{matrix}mx+2my=m+1\\x+\left(m+1\right)y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\m\left(2-ym+y\right)+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\2m-m-1=ym^2-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\m-1=y\left(m^2-1\right)\end{matrix}\right.\)

Để pt có nghiệm duy nhất :

\(\Leftrightarrow m^2-1\ne0\)

\(\Leftrightarrow\left(m-1\right)\left(m+1\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)

Khi đó pt có nghiệm duy nhất là :

\(\left\{{}\begin{matrix}x=1\\y=\frac{1}{m+1}\end{matrix}\right.\)

Vậy..

1/ Ta có : \(M\left(x,y\right)\) thuộc góc phần tư thứ nhất

\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(luônđúng\right)\\\frac{1}{m+1}>0\end{matrix}\right.\) \(\Leftrightarrow m+1>0\Leftrightarrow m>-1\)

Vậy....

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HT
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
DT
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết