Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NH

Cho hệ bất phương trình \(\hept{\begin{cases}x^2-3x-4\le0\\x^3-3|x|x-m^2+6m\ge0\end{cases}}\). Để hệ có nghiệm, các giá trị thích hợp của tham số m là:

DD
9 tháng 5 2020 lúc 18:39

\(\left\{{}\begin{matrix}x^2-3x-4\le0\left(1\right)\\x^3-3x\left|x\right|-m^2+6m>0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-1\le x\le4\)

TH1 : \(-1\le x< 0\)

\(\left(2\right)\Leftrightarrow x^3+3x^2-m^2+6m>0\)

\(\Leftrightarrow m^2-6m\le x^3+3x^2=2\)

\(\Leftrightarrow m^2-6m-2\le0\)

\(\Leftrightarrow3-\sqrt{11}\le m\le3+\sqrt{11}\)

TH2 : \(0\le x< 4\)

\(\Leftrightarrow x^3-3x^2-m^2+6m\ge0\)

\(\Leftrightarrow m^2-6m\le x^3-3x^2=16\)

\(\Leftrightarrow m^2-6m-16\le0\)

\(-2\le m\le8\)

Vậy \(-2\le m\le8\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VT
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
NH
Xem chi tiết
NB
Xem chi tiết
NC
Xem chi tiết
KR
Xem chi tiết
LN
Xem chi tiết