Bài 2: Cực trị hàm số

DT

Cho hàm số \(y=x^3-3mx+2\), với m là tham số. Tìm các giá trị của m để đồ thị hàm số trên có 2 điểm cực trị A, B sao cho \(\Delta IAB\) có diện tích bằng \(\sqrt{18}\) với \(I\left(1;1\right)\)

LL
26 tháng 4 2016 lúc 10:18

Ta có \(y'=3\left(x^2-m\right)\Rightarrow y'=0\Leftrightarrow x^2=m\)

Hàm số có 2 cực trị khi và chỉ khi \(m>0\). Khi đó tọa độ 2 điểm A, B là :

\(A\left(\sqrt{m}'-2m\sqrt{m}\right);B\left(-\sqrt{m};2m\sqrt{m}+2\right)\)

Suy ra \(\overrightarrow{AB}=\left(-2\sqrt{m};4m\sqrt{m}\right)\Rightarrow\overrightarrow{n}\left(2m;1\right)\) là vecto pháp tuyến của AB

Phương trình AB : 2mx + y -2 = 0

Suy ra \(d\left(I,AB\right)=\frac{\left|2m-1\right|}{\sqrt{1-4m^2}},AB=2\sqrt{m}.\sqrt{1+4m^2}\)

Do đó \(S_{\Delta IAB}=\frac{1}{2}.AB.d\left(I,AB\right)=\sqrt{m}\left|2m-1\right|\)

Mà \(S_{\Delta IAB}=\sqrt{18}\Rightarrow\sqrt{m}\left|2m-1\right|=\sqrt{18}\Rightarrow4m^3-4m^2+m-18=0\Leftrightarrow m=2\)

Vậy m = 2 là giá trị cần tìm

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
NA
Xem chi tiết
TC
Xem chi tiết
NN
Xem chi tiết
PT
Xem chi tiết
TC
Xem chi tiết
LT
Xem chi tiết
NH
Xem chi tiết
HL
Xem chi tiết