Bài 2: Cực trị hàm số

TC

Cho hàm số \(y=f\left(x\right)\) có đạo hàm \(f'\left(x\right)=\left(x-2\right)^2\left(x-1\right)\left(x^2-2\left(m+1\right)x+m^2-1\right)\) , \(\forall x\in R\) . Có bao nhiêu giá trị nguyên của m để hàm số \(g\left(x\right)=f\left(\left|x\right|\right)\) có 5 điểm cực trị ?

HQ
9 tháng 7 2021 lúc 21:33

đi từ hướng làm để ra được bài toán: 

Ta thấy muốn f(|x|) có 5 điểm cực trị thì f'(x) phải có 2 điểm cực trị dương

giải f'(x)=0 \(\left\{{}\begin{matrix}x=1\\x^2-2\left(m+1\right)x+m^2-1=0\left(2\right)\end{matrix}\right.\) phương trình (2) phải có 2 nghiệm phân biệt trái dấu nhau 

Ta có: \(\Delta>0\Leftrightarrow m>-1\)

Theo yêu cầu bài toán: \(m^2-1>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\) 

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
NL
Xem chi tiết
MN
Xem chi tiết
NB
Xem chi tiết
LC
Xem chi tiết
MN
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
NT
Xem chi tiết