Ôn tập chương II

PN

Cho hàm số y= x2 +4x + 3

Đường thẳng (d) đi qua A(0;2) có hệ số góc k. Tìm k để (d) cắt (P) tại hai điểm E,F phân biệt sao cho trung điểm I của đoạn È nằm trên đường thẳng x-2y+3= 0

HP
17 tháng 12 2020 lúc 21:48

Đường thẳng (d) có dạng \(y=kx+m\)

\(A\left(0;2\right)\in\left(d\right)\Rightarrow m=2\)

\(\Rightarrow y=kx+2\left(d\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(x^2+\left(4-k\right)x+1=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=\left(k-2\right)\left(k-6\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}k>6\\k< 2\end{matrix}\right.\)

Ta có \(x_1=\dfrac{k-4+\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow E\left(\dfrac{k-4+\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\right)\)

\(x_1=\dfrac{k-4-\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow F\left(\dfrac{k-4-\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\right)\)

Tọa độ trung điểm \(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\)

\(x-2y+3=0\left(d'\right)\)

\(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\in\left(d'\right)\Rightarrow\dfrac{k-4}{2}-\left(k^2-4k+4\right)+3=0\)

\(\Leftrightarrow2k^2-9k+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{9+\sqrt{33}}{2}\left(l\right)\\k=\dfrac{9-\sqrt{33}}{2}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow k=\dfrac{9-\sqrt{33}}{2}\)

P/s: Không biết đúng kh.

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
TN
Xem chi tiết
TA
Xem chi tiết
KC
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết