Chương 5: ĐẠO HÀM

TN

Cho hàm số y= x+1/ 2x-1 , có đồ thị (H). Gọi A (x1,y1), B(x2,y2) là hai điểm phân biệt thuộc (H) sao cho tiếp tuyến của ( H) tại A,B có cùng hệ số góc k. Tìm k biết diện tích tam giác OAB bằng 1/2

NL
23 tháng 4 2021 lúc 11:45

\(y'=\dfrac{-3}{\left(2x-1\right)^2}\)

Tiếp tuyến tại A và B cùng hệ số góc

\(\Leftrightarrow\dfrac{-3}{\left(2x_A-1\right)^2}=\dfrac{-3}{\left(2x_B-1\right)^2}\Leftrightarrow\left(2x_A-1\right)^2-\left(2x_B-1\right)^2=0\)

\(\Leftrightarrow\left(x_A-x_B\right)\left(x_A+x_B-1\right)=0\)

\(\Leftrightarrow x_A+x_B=1\) (do A ; B phân biệt nên \(x_A-x_B\ne0\))

\(\Rightarrow x_B=1-x_A\)

Ta có: \(A\left(x_A;\dfrac{x_A+1}{2x_A-1}\right)\) ; \(B\left(1-x_A;\dfrac{x_A-2}{2x_A-1}\right)\)

\(S_{OAB}=\dfrac{1}{2}\left|\left(x_A-x_O\right)\left(y_B-y_O\right)-\left(x_B-x_O\right)\left(y_A-y_O\right)\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left|x_A\left(\dfrac{x_A-2}{2x_A-1}\right)-\left(1-x_A\right)\left(\dfrac{x_A+1}{2x_A-1}\right)\right|=1\)

\(\Leftrightarrow\left|\dfrac{2x_A^2-2x_A-1}{2x_A-1}\right|=1\) \(\Leftrightarrow\left[{}\begin{matrix}2x_A^2-2x_A-1=2x_A-1\\2x_A^2-2x_A-1=1-2x_A\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x_A^2-4x_A=0\\2x_A^2=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x_A=0\\x_A=2\\x_A=1\\x_A=-1\end{matrix}\right.\) \(\Rightarrow k=...\)

Bình luận (1)

Các câu hỏi tương tự
JE
Xem chi tiết
TY
Xem chi tiết
JE
Xem chi tiết
TN
Xem chi tiết
JE
Xem chi tiết
NV
Xem chi tiết
JE
Xem chi tiết
CN
Xem chi tiết
QA
Xem chi tiết